
International Journal of Solids and Structures 41 (2004) 4861–4874

www.elsevier.com/locate/ijsolstr
A general solution for dynamic response of axially
loaded non-uniform Timoshenko beams

N.M. Auciello a,*, A. Ercolano b

a Department of Structural Engineering, University of Basilicata Macchia Romana, 85100 Potenza, Italy
b Department of Mechanics and Structures, University of Cassino, 03043 Cassino, Italy

Received 21 April 2004; received in revised form 21 April 2004

Available online 1 June 2004

Abstract

A dynamic investigation method for the analysis of Timoshenko beams which takes into account the shearing

deformation and the rotating inertia is proposed.

The solution of the problem is obtained through the iterative variational Rayleigh–Ritz method and assuming as test

functions an appropriate class of orthogonal polynomials which respect the essential conditions only. The procedure,

applied to tapered beams for which a closed form solution is not known, is an alternative approach to the usual FEM

methodologies used in literature. The small number of Lagrangean parameters needed for the analysis allows the use of

strict symbolic calculation programs obtaining an high numerical accuracy with a relative short computer time. The

work ends with the analysis of a few numerical examples and the results are compared with the ones obtained from

other authors mentioned in bibliography.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The dynamic behaviour of structural elements with both complex geometry, consistent shearing

deformation and rotating inertia can be studied by means of the Euler–Bernoulli beam theory. As well

known, an exact analysis can be carried out only in the case of constant section beam. If we want to take
into account the section variation we can only perform approximate analysis mostly based on finite element

methods (Downs, 1977). In particular To (1981), extended the theory developed by Przemieniecki (1968) for

constant section beams, presenting an excellent work on the free-frequencies determination by using cubic

test functions. Recently, Cleghorn and Tabarrok (1992) reformulated the problem obtaining the exact
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stiffness matrix of the beam element. Adopting a beam-like element with four degrees of freedom,

Eisenberger (1994, 1995) obtained the first 10 exact free frequencies for simple supported tapered beams.

Adopting a semi-analytical procedure (Courant and Hilbert, 1953), Gutierrez et al. (1991) obtained the

fundamental frequencies of tapered beams with a mass to the extreme reducing the eigenvalue problem to a
minimum problem. The Rayleigh-like approach followed in the paper is alternative to the usual FEM

models and is based on the optimization of an exponential Schmidt (1982) parameter. Another alternative

to the numerous variational approaches is given by Auciello (1993, 2000) in which, applying the force

method the structure is discretized in rigid elements connected by elastic skates. The solution is obtained

exploiting the classical theorems for Lagrangian approach (LA) in which the relative vertical shiftings are

assumed as freedom parameters. As regards axially loaded beams many contributions from different

Authors can be found in literature. Among the others an exact solution referred to constant section beams

has been given by Abramovich (1992). For tapered beams with axial loads it is worthwhile to cite the recent
work of Leung and Zhou (1995) where the dynamic stiffness matrix is widely used for the determination of

the free frequencies.

A detailed analysis is carried out by Esmailzadeh and Ohadi (2000) which consider the equation of

motion for two different positions of the axial load and obtain the free frequencies by means of the

Frobenius method.

This paper presents a general technique for the evaluation of the free frequencies based on the Rayleigh–

Ritz method. The energy functional takes into account both the shear deformation and the rotatory inertia.

Displacements and rotations are given through a suitable choice of orthogonal polinomials which have
already supplied excellent results both for slab elements (Bhat, 1985) and Euler–Bernoulli beams (Auciello,

2001). The numerical solutions of the examples have been obtained by means of Mathematica (Wolfram,

1991).
2. Problem formulation

Let us consider a variable-section beam of length L made of an homogeneous and isotropic material. We

also defined a cartesian frame f0; xi; i ¼ 1; 2; 3g where x1 coincides with axis of the beam and x2 and x3 are
the principal axis of the cross section. Obviously, if loads have the direction of x2 we can write for the
displacements
u1 ¼ �x2/ðx1; tÞ
u2 ¼ u2ðx1; tÞ;
u3 ¼ 0

ð1Þ
where /ðx1; tÞ is the cross-section rotation.

As well known, in the Timoshenko model the cross-section rotation no longer coincides with the tangent

to the section and consequently we write (Fig. 1):
ou2
ox1

¼ /þ c: ð2Þ
By c ¼ Q
GA we denoted the average shear deformation. The non-zero components of the deformation

tensor are:
e11 ¼ ð�x2/
0Þ e12 ¼

1

2
ðu02 � /Þ: ð3a; bÞ
where by the apex we denoted the derivative with respect to x1.
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Fig. 1. Timoshenko beam element: kinematics of deformation.
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Consequently the elastic energy of the structure is
U ¼ 1

2

Z L

0

Z
A
rTedV ; ð4Þ
where
e ¼ �x2/
0 �/þ u02

� �T
: ð5Þ
Taking into account the constitutive relations (5) and (4) can be rewritten as
U ¼ 1

2

Z L

0

/0

u02 � /

� �T
EI 0

0 kGA

� �
/0

u02 � /

� �
dx1; ð6Þ
where k is the shear factor of the sections (Cowper, 1966), and EI and kGA are the flexural and shear

stiffness respectively.

The potential energy of the applied forces is given by the axial forces P and is a second order function of
the deformation tensor:
VP ¼ P
2

Z L

0

ðu02Þ
2
dx1: ð7Þ
The kinetic energy can be written
T ¼ 1

2

Z L

0

Z
A
qð _u21 þ _u22 þ _u23ÞdV : ð8Þ
After the area integration (8) becomes:
T ¼ 1

2

Z L

0

_/
_u2

� �T
qI 0

0 qA

� �
_/
_u2

� �
dx1: ð9Þ
If we are searching for solutions of the kind
u2ðx1; tÞ ¼ u2ðx1Þeixt;
/ðx1; tÞ ¼ /ðx1Þeixt;

ð10Þ
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the kinetic energy can also written:
T ¼ x2

2

Z L

0

u2
/

� �T
qA 0

0 qI

� �
u2
/

� �
dx1: ð11Þ
Finally we obtain the functional T :
ðU þ VpÞ ¼ T : ð12Þ
3. Approximate solution

Obviously the solution is affected by the choice of the functions which represent kinematics. According

to the usual Rayleigh–Ritz (R–R) approximation, u2 and / are linear combinations of functions which
respect the essential conditions and take the form:
u2ðx1Þ ¼
Xn

k¼1

akuk ¼ UTq1; ð13Þ

/ðx1Þ ¼
Xn

k¼1

bkwk ¼ WTq2; ð14Þ
where
q1 ¼ a1 a2 � � � an½ �T; q2 ¼ b1 b2 � � � bn½ �T ð15Þ

are the generalized Lagrangian coordinates. Each component of the following vectors:
U ¼ u1 u2 u3 � � � un½ �T; W ¼ w1 w2 w3 � � � wn½ �T; ð16Þ
represents a well specified type of function defined in the interval ½0; L�.
Substituting (13) and (14) into (6) we get the expression of the elastic energy:
U ¼ 1

2

Z L

0

½EIðbkwkÞ
02 þ kGAðak/0

k � bkwkÞ
2�dx1: ð17Þ
The elastic energy in (17) can also be written in matrical form as
U ¼ 1

2
qT E

0 0

0 B2

� ��
þ kG B1 �BT

3

�B3 B0

� ��
q ¼ 1

2
qKUq; ð19Þ
where
q ¼ q1 q2½ �T; ð18Þ

and
B1 ¼
Z L

0

AWWT dx1; B0 ¼
Z L

0

AU0U0T dx1; ð20; 21Þ

B2 ¼
Z L

0

IW0W0T dx1; B3 ¼
Z L

0

AWU0T dx1: ð22; 23Þ
The stiffness matrix KU contains both the flexural and shear deformation energy.
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In the same fashion the potential energy of the applied loads can be written as
VP ¼ P
2

Z L

0

ðak/kÞ
02
dx1 ¼

P
2
qT

BP 0

0 0

� �
q; ð24Þ
where
BP ¼
Z L

0

U0U0T dx1: ð25Þ
Substituting (13) into (11) we get for the kinetic energy T the expression
T ¼ x2

2

Z L

0

q½Aðak/kÞ
2 þ IðbkwkÞ

2�dx1; ð24Þ
In matricial form
T ¼ x2

2
qTq

B4 0

0 B5

� �
q ¼ x2

2
qTMq: ð25Þ
where
B4 ¼
Z L

0

AUUT dx1; B5 ¼
Z L

0

IWWT dx1: ð26Þ
Obviously the matrix M is symmetric and positive definite, and is comprehensive of the rotatory inertia.

At last, functional in (12) is written
P½q� ¼ 1

2
qTðKU þ KP Þq�

x2

2
qTMq ¼ 1

2
qTðK� x2MÞq; ð27Þ
where K is the stiffness matrix. It is worth to note that, for P < 0, KP is negative definite so that the

overall effect is a reduction of the eigenvalues of K. By the stationary condition of the functional in (27) we

get:
dP ¼ 1

2
oqTðK� x2MÞqþ 1

2
qTðK� x2MÞoq ¼ 1

2
oqTðK� x2MÞqþ 1

2
½ðK� x2MÞoq�Tq

¼ 1

2
oqTðK� x2MÞqþ 1

2
oqTðK� x2MÞq ¼ oqTðK� x2MÞq ¼ 0; ð28Þ
From the variational equality (28) we get the following homogeneous system in the unknown q
ðK� x2MÞq ¼ 0: ð29Þ

The frequency equation is given by the well known equation:
detðK� x2MÞ ¼ 0: ð30Þ
4. Test functions

A general procedure which makes use of vectors U and W respecting only the essential conditions is

presented. In particular orthogonal polynomial functions are assumed starting from a first polynomial p1 of
grade equal to the number of the essential conditions. Obviously every pi 2 L2½0; L� is square integrable; i.e:
Z L

0

pi dx1 < 1; hpi; pii ¼
Z L

0

pipi dx1 < 1: ð31Þ
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The choice of these polynomials has proved to be very effective. The functions pi are obtained by means

of the Gram–Schmidt iterative procedure presented by Bhat (1985) and already utilized for Euler–Bernoulli

beams in Auciello (2001). In this case we first set all the uk related to the transversal displacements and

subsequently the wk related to the shear deformation. We start with the following polynomial:
u1ðx1Þ ¼ cjx
j
1; j ¼ 0;m ð32Þ
where m is equal to the number of the essential conditions. Obviously we have to satisfy the normality

condition too:
hu1;u1i ¼ 1: ð33Þ
The other polynomials uk with k > r are obtained through the sequence:
uk ¼ ðx� DkÞuk�1 � Ckuk�2; ð34Þ
where
Dk ¼
ðxuk�1;uk�1Þ
ðuk�1;uk�1Þ

; Ck ¼
ðxuk�1;uk�2Þ
ðuk�2;uk�2Þ

: ð35Þ
The remaining functions wk are obtained from relative rotation conditions starting from a polynomial of

an order lower than the one chosen for the transversal displacements and repeating the sequence ((32)–(35))

after the substitution of uk with wk. In other words the polynomial function related to the transversal

displacements presents an order greater than the one related to rotation functions. This particular choice is

made in order to avoid the overestimation of the rate of elastic energy due to shear respect to the rate due to
bending. Otherwise we can’t simulate the Euler–Bernoulli beam. In fact rewriting Eq. (6):
U ¼ 1

2

Z L

0

½EIð/0Þ2 þ kGAðu02 � /Þ2�dx1 ¼
1

2

Z L

0

EA
I
A
ð/0Þ2

�
þ k

G
E
ðu02 � /Þ

�
dx1 ¼ Ub þ Us; ð36Þ
we note that for u02 ! / we get the deformation energy in the Euler–Bernoulli theory:
Ue ¼
1

2

Z L

0

EIðu002Þ
2
dx1: ð37Þ
Consequently if we use polynomials of the same order for both displacements and rotations we get that in

(36) the ratio I=A goes to zero faster than the difference ðu02 � /Þ. Then the energy rate Us, which does not

depend from I=A, overcomes the rate Ub and the resulting elastic energy is erroneously much bigger than

the value in (37). This is a well-known numerical phenomenon defined in literature as shear-locking. It can
take place in the finite elements procedures when shear deformation and rotatory inertia are taken into

account; Carpenter et al. (1986). In other words, because the problem is strongly influenced by the choice of

the test functions, we could risk to increase the degrees of freedom of the structure without obtaining an

improvement of the solution.

Using the symbolic program Mathematica the sequence ((32)–(35)) have been implemented in a

numerical procedure which allows the calculation of the test functions satisfying the m essential conditions.

In the end assuming polynomial functions respectively of order m� 1 for u2 and of order m� 1 for / we

arrive to a consistent interpolation element type (Reddy, 1997).
Obviously, in order to avoid completely the shear locking higher order methods should be preferred

Reddy (1997).
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5. Results and discussion

In what follows, some problems, related to different boundary conditions, are discussed.

The numerical examples shown deal with beams made of homogeneous and isotropic material with a
ratio E/G equal to 2.6 and a shear correction factor k equal to 5/6. Although the method presented can be

applied to more complex structure we assume a beam section with a constant base B and a linearly variable

height H . In these conditions the geometrical parameters of the cross-section are given as functions of a:
Fig. 2.

restrain
Aðx1Þ ¼ A0ð1þ ax1Þ; Iðx1Þ ¼ I0ð1þ ax1Þ3: ð38; 39Þ
By A0 and I0, we have denoted respectively the area and the inertia at x1 ¼ 0.

In the following two examples are given.

5.1. Cantilever beam with tip mass

Let us consider the case of the cantilever beam with a tip mass and rotatory inertia (Fig. 2a) already

reported by Leung and Zhou (1995).

Obviously we have to add in (11) the rate of kinetic energy due to the rotatory inertia:
TM ¼ x2

2
½M _u22ðLÞ þ JM _/2ðLÞ�: ð40Þ
From (13 and 14) we get
TM ¼ 1

2
x2qT

B6 0

0 B7

� �
q ¼ x2

2
qTfMq; ð41Þ
where
B6 ¼ MULU
T
L ; B7 ¼ JMWLW

T
L ð42Þ
Obviously we have to add (41) into (26).
Beam of non-uniform thickness under compressive axial loads. (a) Cantilever beam with tip mass. (b) A general elastically end

ed-beam.
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In the following we will make use of these two non-dimensional parameters which are frequently used in

literature:
Table

Cantil

a ¼

r

Clam

0.02

0.04

0.08
r ¼
ffiffiffiffiffi
I0
A0

r
; Pr ¼ �NL2

EI0
ð43; 44Þ
Free frequencies are expressed through the parameters
X2
i ¼ xiL2

ffiffiffiffiffiffiffiffi
qA0

EI0

r
: ð45Þ
As first example the case of the cantilever without axial loads with tapering parameter a ¼ �0:2 is

reported. This case has been analysed by Leung and Zhou (1995) using the dynamic stiffness method

(DSM), by Rossi et al. (1990) using a finite element approach (FEM) and by Auciello (2000) who used a

LA.
1

ever tapered beam with a tip mass; first three frequency coefficients for various values of n

�0:2 JM ¼ 0 n Rossi

et al.

(1990)

Error (%) Error

(%)

l X 2 3 4 5 6 7 8 n8/Rossi et

al. (1990)

n5=n8

ped-free

0 X1 4.156 3.598 3.597 3.596 3.595 3.595 3.595 3.59 0.139 0.028

X2 27.288 20.317 20.273 20.18 20.18 20.18 20.17 0.05 0.461

X3 54.859 54.355 53.488 53.488 53.48 0.015 2.522

0.4 X1 2.348 2.146 2.144 2.144 2.144 2.144 2.144 2.14 0.187

X2 18.754 15.646 15.536 15.526 15.525 15.525 15.52 0.032 0.071

X3 46.133 45.243 45.05 45.026 45.03 0.009 2.447

1 X1 1.652 1.527 1.525 1.525 1.524 1.524 1.524 1.52 0.262

X2 17.562 14.855 14.734 14.728 14.726 14.726 14.72 0.041 0.054

X3 45.228 44.293 44.133 44.113 44.12 0.016 2.517

0 X1 4.26 3.561 3.559 3.558 3.558 3.558 3.558 3.56 0.056

X2 23.64 19.128 19.066 19.019 19.018 19.018 19.01 0.042 0.252

X3 48.302 47.796 47.398 47.396 47.43 0.072 1.896

0.4 X1 2.3 2.131 2.129 2.129 2.129 2.129 2.129 2.13 0.047

X2 16.993 14.895 14.826 14.82 14.819 14.819 14.82 0.007 0.047

X3 41.082 40.612 40.504 40.495 40.52 0.062 1.445

1 X1 1.622 1.517 1.516 1.516 1.516 1.516 1.516 1.51 0.396

X2 15.98 14.154 14.081 14.076 14.076 14.076 14.07 0.043 0.036

X3 40.279 39.798 39.707 39.7 39.72 0.05 1.455

0 X1 3.703 3.423 3.422 3.422 3.422 3.422 3.422 3.42 0.058

X2 17.665 15.899 15.854 15.84 15.84 15.84 15.84 0 0.088

X3 35.64 35.385 35.271 35.271 35.35 0.224 1.043

0.4 X1 2.177 2.075 2.074 2.074 2.074 2.074 2.074 2.07 0.193

X2 13.661 12.787 12.761 12.758 12.758 12.758 12.76 0.016 0.024

X3 31.049 30.9037 30.865 30.863 30.92 0.185 0.602

1 X1 1.543 1.482 1.481 1.481 1.481 1.481 1.481 1.48 0.068

X2 12.952 12.189 12.164 12.162 12.162 12.162 12.16 0.016 0.016

X3 30.445 30.303 30.271 30.269 30.32 0.168 0.581
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Because of (39), the applied mass is a function of the following parameters:
Table

Cantile

elemen

a

r

Clam

0.02

0.04

0.08

0.1
l ¼ M 1
�

þ a
2

	�1

; J � ¼
ffiffiffiffiffiffi
JM
M

r
: ð46Þ
In order to verify the convergence properties of the procedure, the first three frequencies, for different

values of r and n, are reported in Table 1. By n we denoted the number of the degrees of freedom used in the

discretization. In the last column the approximation for n ¼ 8 is reported. It appears clearly that the dif-

ferences increase for smaller values of r. This is due to the shear locking phenomenon which, although
minimized, becomes measurable as r ! 0 (Table 1).

The results given by different authors are reported in Table 2. In particular, those given by Leung and

Zhou (1995) and written in Italics are obtained using power series stopped to the 25th power and they are

practically coinciding with the results of this paper. As well known, in the LA method we get to the solution

from below so that the frequencies are lower than the exact ones. It is worth of note that for n ¼ 7 the

model has 2n ¼ 14� of freedom and achieves a very good accuracy with substantially few degrees of

freedom.

In Fig. 3, we have the variation of X1 for changes in the axial load and for two different values of
l : l ¼ 0 (3a) and l ¼ 1 (3b). It is worth to notice that as Pr grows the fundamental frequencies decay and

go to zero as Pr ! Pc. For the same a, the applied mass causes a decrease of natural frequencies. This can be

relevant in the seismic design where applied mass are introduced in order to change the natural period and

avoid resonance problems.

5.2. The beam with elastic constraints

The boundary conditions are referred to the scheme in Fig. 2b. The kinetic energy is still given by (11).
We just have to add in (6) the elastic energy of the constraints Uc:
Uc ¼
1

2
kr1uð0Þ þ

1

2
kr2uðLÞ þ

1

2
kt1u22ð0Þ þ

1

2
kt2u22ðLÞ: ð47Þ
2

ver tapered beam: comparison between the present method, the dynamic stiffness method, Leung and Zhou (1995), the finite

t method (FEM), Rossi et al. (1990), and the Lagrangian approach (LA), Auciello (2000)

JM ¼ 0 Present ()0.2) Leung and Zhou

(1995)

)0.2 LA (Rossi et al.,

1990)

)0.2, LA (Auciello,

2000)

l X1 X2 X3 X1 X2 X3 X1 X2 X3 X1 X2 X3

ped-free

0 3.587 20.18 53.488 3.59 20.17 53.48 3.584 19.984 52.445

0.4 2.144 15.525 45.05 2.14 15.52 45.03 2.002 15.228 44.219

1 1.524 14.726 44.133 1.52 14.72 44.12 1.402 14.542 43.474

0 3.558 19.018 47.398 3.56 19.01 47.43 3.552 18.855 46.693

0.2 2.588 15.671 41.542 2.59 15.67 41.53

0.4 2.129 14.819 40.504 2.13 14.82 40.52 1.99 14.559 39.474

0.6 1.85 14.435 40.081

1 1.516 14.076 39.707 1.51 14.07 39.72 1.393 13.921 39.328

0 3.422 15.84 35.271 3.42 15.84 35.35 3.415 15.744 34.96

0.4 2.074 12.758 30.865 2.07 12.76 30.92 1.94 12.585 30.708

1 1.481 12.162 30.271 1.48 12.16 30.32 1.362 12.074 30.237

0 3.33 14.289 30.711 3.3 14.31 30.7

0.2 2.461 12.268 27.726 2.46 12.27 27.73

0.6 1.773 11.418 26.793 1.77 11.42 26.79
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Fig. 3. (a) Fundamental frequency vs. axial-force parameter for cantilever beam with a tip mass: (a) l ¼ 0 (b) l ¼ 1.
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Using (13) and (14), after some algebra we get to the expression
Uc ¼
1

2

B8 0

0 B9

� �
ð48Þ
where
B8 ¼ kt1Uð0ÞUTð0Þ þ kt2UðLÞUTðLÞ; ð49Þ
B9 ¼ kr1Wð0ÞWTð0Þ þ kr2WðLÞWTðLÞ: ð50Þ
For numerical convenience it is better to introduce the following non-dimensional parameters:
KT1 ¼
kt1L3

EIð0Þ ; KT2 ¼
kt2L3

EIðLÞ ; KR1 ¼
kr1L
EIð0Þ ; KR2 ¼

kr2L
EIðLÞ : ð51Þ
The simply supported beam has been analysed for KT1 ! 1, KT2 ! 1 and KR1 ¼ 0, KR2 ¼ 0. In Fig. 4

the fundamental frequency parameter X1 vs. axial load for different a are reported.

In Table 3 the first five free frequencies for the pinned–pinned beam and for different values of a are

compared with the exact values given by Eisenberger (1995).

In order to obtain the upper frequencies the discretization parameter n has been chosen equal to 10 so
that the stiffness matrix has dimension equal to 20.



Table 3

Comparison of the first five non-dimensional frequencies for simply supported beam between present method and exact approach

(Eisenberger, 1995)

a )0.5 0 1

r ¼ 0:0707 Present Eisenberger

(1995)

Present Eisenberger

(1995)

Present FEM (Rossi

et al., 1990)

Pinned–pinned

X1 6.765 6.754 9.023 9.023 11.901 11.896

X2 24.462 24.539 29.914 29.912 36.427 36.424

X3 47.371 47.302 55.201 55.207 63.004 62.849

X4 72.674 72.672 81.817 81.815 68.143 68.048

X5 99.231 99.039 108.856 108.695 89.984 89.696

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1
Pr

α=0 α=0.1 α=0.2 α=0.3 α=—0.2

Fig. 4. Fundamental frequency vs. axial-force parameter for simply supported beam.
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In Table 4 the values of X1 as function of r are reported and compared with the ones of other authors.

The solution obtained by Gutierrez et al. (1991) using a finite element procedure proposed by Przemieniecki

(1968) is almost coincident with the one presented in this paper. The same authors, Gutierrez et al. (1991)

developed a different procedure starting from the Ritz approach and using an optimization factor proposed
Table 4

Comparison of the first non-dimensional frequency X1, between present method and Lagrangian approach (LA) for simply supported

beam

a 0 0.1 0.15

r Pres-

ent

Exact Ritz ap-

proach

(Gut-

ierrez

et al.,

1991)

LA

(Auci-

ello,

1993)

Pres-

ent

FEM Ritz ap-

proach

(Gut-

ierrez

et al.,

1991)

LA

(Auci-

ello,

1993)

Pres-

ent

FEM Ritz ap-

proach

(Gut-

ierrez

et al.,

1991)

LA

(Auci-

ello,

1993)

Pinned–pinned

0.03 9.6949 9.695 9.748 9.676 10.1541 10.154 10.235 10.134 10.3774 10.377 10.458 10.36

0.04 9.5666 9.567 9.611 9.548 10.0071 10.007 10.045 9.988 10.2207 10.221 10.267 10.2

0.05 9.4106 9.411 9.446 9.393 9.8291 9.83 9.85 9.811 10.0314 10.031 10.054 10.01

0.06 9.2318 9.232 9.257 9.216 9.6265 9.627 9.645 9.61 9.8164 9.816 9.84 9.799

0.07 9.0356 9.036 9.057 9.021 9.4053 9.406 9.428 9.39 9.5825 9.582 9.604 9.566

0.08 8.8266 8.827 8.85 8.813 9.1713 9.172 9.189 9.157 9.3358 9.336 9.346 9.32
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by Schmidt (1982). These results are different from all the others reported because of the numerical

instabilities in the procedure. In the last column results are reported the results taken from a work of

Auciello (1993) where the LA has been used. Unlike the other classical methods, the latter provides the

convergence from below.
For the sake of completeness the remaining parameters X2 ed X3 are reported in Table 5.

In Tables 6 and 7 the results with boundary conditions KT1 ! 1, KT2 ! 1 and KR1 ¼ 0:1; KR2 ¼ 0 are

reported. As can be easily verified the results are perfectly in agreement with the others.
5.3. The stability problem

The stability problem is obviously reduced to the following eigenvalue problem:
Table

As a T

a

r

Pinn

0.03

0.04

0.05

0.06

0.07

0.08

Table

As a T

a

r

Pinn

0.03

0.04

0.05

0.06

0.07

0.08
ðKU � PrKP Þq ¼ 0: ð52Þ
The smallest Pr, solution of (52), gives the critical value while the related eigenvector produces the first
order configuration. For a ¼ 0, the constant section beam the exact solution is given by the formula
5

able 4 for X2 and X3

0 0.1 0.15

X2 X3 X2 X3 X2 X3

Present LA

(Auci-

ello,

1993)

Present LA

(Auci-

ello,

1993)

Present LA

(Auci-

ello,

1993)

Present LA

(Auci-

ello,

1993)

Present LA

(Auci-

ello,

1993)

Present LA

(Auciello,

1993)

ed–pinned

36.9565 36.681 77.954 76.526 38.546 38.226 80.934 79.423 39.3182 39.037 82.411 80.815

35.332 35.099 71.86 70.742 36.7218 36.487 74.212 73.043 37.3917 31.158 75.3655 74.137

33.572 33.373 65.971 65.084 34.7681 34.573 67.817 66.894 35.34 35.147 68.713 67.747

31.784 31.621 60.562 59.838 32.805 32.643 62.016 61.265 33.29 33.13 62.716 61.932

30.037 29.899 55.714 55.104 30.907 30.77 56.868 56.237 31.3176 31.183 57.419 56.763

28.372 28.254 51.415 50.888 29.1136 28.996 52.341 51.795 29.4618 29.346 52.781 52.213

6

able 4 for elastic spring (KR1 ¼ 0:1)-pinned beam

0 0.1 0.15

Present Exact Ritz ap-

proach

(Gut-

ierrez

et al.,

1991)

LA

Auci-

ello,

1993)

Present FEM (Gut-

ierrez

et al.,

1991)

LA

(Auci-

ello,

1993)

Present FEM Ritz ap-

proach

(Gut-

ierrez

et al.,

1991)

LA

(Auci-

ello,

1993)

ed–pinned, KR1 ¼ 0:1

9.787 9.789 9.824 9.769 10.243 10.244 10.325 10.223 10.465 10.682 10.756 10.444

9.657 9.657 9.703 9.639 10.093 10.094 10.129 10.074 10.301 10.512 10.548 10.285

9.497 9.498 9.534 9.481 9.911 9.912 9.932 9.893 10.112 10.307 10.336 10.093

9.314 9.315 9.342 9.299 9.705 9.705 9.723 9.687 9.892 10.074 10.106 9.874

9.114 9.114 9.138 9.099 9.479 9.479 9.502 9.463 9.654 9.822 9.836 9.638

8.901 8.901 8.926 8.887 9.241 9.241 9.256 9.226 9.403 9.558 9.565 9.386



Table 8

Compressive buckling load for different boundary conditions

a Clamped-free Pinned–pinned KR1 ¼ 0:1-Pinned Clamped–clamped

)0.4 1.4653 3.9245 4.0163 10.4961

)0.2 1.8839 5.6787 5.7838 14.2016

0 2.291a 7.5459a 7.6605 17.6896a

0.1 2.4913 8.5079 8.6261 19.3318

0.2 2.6898 9.4822 9.6032 20.9015

0.3 2.8867 10.4645 10.5876 22.3954

0.4 3.0823 11.4504 11.5752 23.7648

0.6 3.4691 13.418 13.5449 26.2751

0.8 3.8529 15.3584 15.4851 28.3972

1 4.2327 17.2468 17.3718 30.1126

a Bazant–Cedolin; Eq. (58).

Table 7

As a Table 5 for elastic spring (KR1 ¼ 0:1)-pinned beam

a 0 0.1 0.15

X2 X3 X2 X3 X2 X3

r Present LA

(Auciello,

1993)

Present LA

(Auciello,

1993)

Present LA

(Auci-

ello,

1993)

Present LA Present LA

(Auci-

ello,

1993)

Present LA

(Auci-

ello,

1993)

Pinned–pinned, KR1 ¼ 0:1

0.03 37.009 36.763 77.571 76.595 38.6 38.346 80.479 79.489 39.374 39.117 81.882 80.881

0.04 35.382 35.173 71.539 70.799 36.771 36.559 73.841 73.097 37.441 37.228 74.938 74.19

0.05 33.616 33.442 65.705 65.13 34.81 34.636 67.513 66.938 35.383 35.209 68.368 67.79

0.06 31.822 31.678 60.341 59.875 32.842 32.698 61.766 61.301 33.327 33.184 62.436 61.967

0.07 30.071 29.949 55.527 55.135 30.938 30.818 56.662 56.266 31.349 31.229 57.19 56.791

0.08 28.401 28.297 51.258 50.913 29.141 29.038 52.168 51.818 29.489 29.386 52.59 52.236
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Pc ¼
p2EIeL2

1



þ p2EIeL2kGA

��1

; ð53Þ
which takes into account the shear deformation too. Obviously the length eL depends on the boundary

conditions; Ba�zant and Cedolin (1991). In Table 8, for r ¼ 0:1 and for different values of a some critical

loads are reported. In particular they are referred to the following boundary conditions: clamped–clamped,

clamped–free and pinned–pinned. The numerical results for the uniform beam are reported in italics and

coincide with the ones obtained by the formula in (53).
6. Conclusions

The method presented, based on the Hamilton principle, obtains the solution minimizing the functional

of the problem. The approximation lies both in the choice of the test functions and in the iterative pro-

cedure for the search of the minimum. The test functions are orthonormal polynomials which satisfy the

essential conditions only and are automatically generated for every boundary conditions by the program of
symbolic calculus Mathematica. It must be stressed that the latter has shown to be a powerful tool for both
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analytical and numerical developments. Comparing the results with the ones in literature some reflections

can be pointed out.

(1) Compared to FEM a reduced number of parameters can be used with a consequently computer time
saving.

(2) The proposed procedure has shown to be effective, very easy to implement and, compared to the opti-

mization method with exponential factor, more stable especially for the higher frequencies.

(3) Assuming different test functions for displacements and rotations the shear locking can be limited. To

avoid completely the locking phenomena higher order methods must be used as the one in Reddy

(1997).

(4) Differently from other exact methods, the dynamic behaviour of tapered beams with various boundary

conditions can be analysed without defining the relative test functions.
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