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Abstract

A dynamic investigation method for the analysis of Timoshenko beams which takes into account the shearing
deformation and the rotating inertia is proposed.

The solution of the problem is obtained through the iterative variational Rayleigh-Ritz method and assuming as test
functions an appropriate class of orthogonal polynomials which respect the essential conditions only. The procedure,
applied to tapered beams for which a closed form solution is not known, is an alternative approach to the usual FEM
methodologies used in literature. The small number of Lagrangean parameters needed for the analysis allows the use of
strict symbolic calculation programs obtaining an high numerical accuracy with a relative short computer time. The
work ends with the analysis of a few numerical examples and the results are compared with the ones obtained from
other authors mentioned in bibliography.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The dynamic behaviour of structural elements with both complex geometry, consistent shearing
deformation and rotating inertia can be studied by means of the Euler-Bernoulli beam theory. As well
known, an exact analysis can be carried out only in the case of constant section beam. If we want to take
into account the section variation we can only perform approximate analysis mostly based on finite element
methods (Downs, 1977). In particular To (1981), extended the theory developed by Przemieniecki (1968) for
constant section beams, presenting an excellent work on the free-frequencies determination by using cubic
test functions. Recently, Cleghorn and Tabarrok (1992) reformulated the problem obtaining the exact
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stiffness matrix of the beam element. Adopting a beam-like element with four degrees of freedom,
Eisenberger (1994, 1995) obtained the first 10 exact free frequencies for simple supported tapered beams.

Adopting a semi-analytical procedure (Courant and Hilbert, 1953), Gutierrez et al. (1991) obtained the
fundamental frequencies of tapered beams with a mass to the extreme reducing the eigenvalue problem to a
minimum problem. The Rayleigh-like approach followed in the paper is alternative to the usual FEM
models and is based on the optimization of an exponential Schmidt (1982) parameter. Another alternative
to the numerous variational approaches is given by Auciello (1993, 2000) in which, applying the force
method the structure is discretized in rigid elements connected by elastic skates. The solution is obtained
exploiting the classical theorems for Lagrangian approach (LA) in which the relative vertical shiftings are
assumed as freedom parameters. As regards axially loaded beams many contributions from different
Authors can be found in literature. Among the others an exact solution referred to constant section beams
has been given by Abramovich (1992). For tapered beams with axial loads it is worthwhile to cite the recent
work of Leung and Zhou (1995) where the dynamic stiffness matrix is widely used for the determination of
the free frequencies.

A detailed analysis is carried out by Esmailzadeh and Ohadi (2000) which consider the equation of
motion for two different positions of the axial load and obtain the free frequencies by means of the
Frobenius method.

This paper presents a general technique for the evaluation of the free frequencies based on the Rayleigh—
Ritz method. The energy functional takes into account both the shear deformation and the rotatory inertia.
Displacements and rotations are given through a suitable choice of orthogonal polinomials which have
already supplied excellent results both for slab elements (Bhat, 1985) and Euler—Bernoulli beams (Auciello,
2001). The numerical solutions of the examples have been obtained by means of Mathematica (Wolfram,
1991).

2. Problem formulation

Let us consider a variable-section beam of length L made of an homogeneous and isotropic material. We
also defined a cartesian frame {0, x;,i = 1,2,3} where x; coincides with axis of the beam and x, and x; are
the principal axis of the cross section. Obviously, if loads have the direction of x, we can write for the
displacements

up = —x20(x1,1)
175 :Mz(xl,t), (1)
uz = 0

where ¢(xy,¢) is the cross-section rotation.
As well known, in the Timoshenko model the cross-section rotation no longer coincides with the tangent
to the section and consequently we write (Fig. 1):
auz
2 b+ 2
om0 2)
By y= G—QA we denoted the average shear deformation. The non-zero components of the deformation

tensor are:
, L,
e = (—x20") epn= 5(”2 —¢). (3a,b)

where by the apex we denoted the derivative with respect to x;.
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Fig. 1. Timoshenko beam element: kinematics of deformation.

Consequently the elastic energy of the structure is

l L
U= —/ /aTst,
2 0 A

where

e=[-x¢ —q’)—i—u/Z]T.

Taking into account the constitutive relations (5) and (4) can be rewritten as

71 L d)/ T EI 0 (,ZS,
v=3 [ LHJ {0 kGAHu;w]dx“

4863

(6)

where k is the shear factor of the sections (Cowper, 1966), and EI and kGA are the flexural and shear

stiffness respectively.

The potential energy of the applied forces is given by the axial forces P and is a second order function of

the deformation tensor:

P [t
VPZE/ () ;.
0

The kinetic energy can be written

L
T:l/ /p(u$+u§+u§)du
2o Ja
After the area integration (8) becomes:
1 [t ¢ T pl 0 1[¢
T =— dx;.
e 1 L)

If we are searching for solutions of the kind

iot

uZ(xht) :u2('x1)e )

px1,1) = p(xr) e,

()

(10)
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the kinetic energy can also written:

o’ L 75 ! pA 0 75
T=— dx;. 11
FAIIHE v
Finally we obtain the functional T':
U+V,)=T. (12)

3. Approximate solution

Obviously the solution is affected by the choice of the functions which represent kinematics. According
to the usual Rayleigh-Ritz (R-R) approximation, u, and ¢ are linear combinations of functions which
respect the essential conditions and take the form:

n

ur(x1) = ZakﬁDk = ®'q,, (13)
k=1
b)) => by =¥'q,, (14)
k=1
where
T T
qlz[al a - an] ) q2:[b1 b2 bn] (15)
are the generalized Lagrangian coordinates. Each component of the following vectors:
®=[9 ¢ 93 - ol ¥=[ ¥ ¥y o Y] (16)

represents a well specified type of function defined in the interval [0, L].
Substituting (13) and (14) into (6) we get the expression of the elastic energy:

1 L
v=3 /0 EL (b)) + kGA(ard, — b)) dxr. (17)
The elastic energy in (17) can also be written in matrical form as
1y 0 0 B, -B; 1
Ufiq {E[O Bz] JrkG{_B3 B, quqKUq, (19)
where
q=q ‘h]Ta (18)
and
L L
B, = / AYYT dx,, By = / AD' O dyx,, (20,21)
0 0
L L
B, = / Y'Y dx,, B;= / AYD" dx,. (22,23)
0 0

The stiffness matrix Ky contains both the flexural and shear deformation energy.
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In the same fashion the potential energy of the applied loads can be written as

P L 2 P T BP 0
where
L
By = / 0" dx,. (25)
0
Substituting (13) into (11) we get for the kinetic energy 7T the expression
o’ [ 2 2
T= 5 plA(ardy)” + I(buy) ] dx, (24)
0
In matricial form
2 2
_ o By 0] o g
T—2qp[0 Bs]q—quq. (25)
where
L L
B, = / ADPD®"dx;, Bs= / YY" dx,. (26)
0 0

Obviously the matrix M is symmetric and positive definite, and is comprehensive of the rotatory inertia.
At last, functional in (12) is written

1 w? 1
q] = EqT(KU +Kp)q — quMq = EqT(K — w’M)q, (27)

where K is the stiffness matrix. It is worth to note that, for P < 0, Kp is negative definite so that the
overall effect is a reduction of the eigenvalues of K. By the stationary condition of the functional in (27) we
get:

oIl = %6qT(K — w’M)q + %qT(K — w’M)dq = %aqT(K — w*M)q + % [(K — w’M)dq]"q
1 1
= EGqT(K — w’M)q + E@qT(K — o’M)q = 0q" (K — *’M)q = 0, (28)
From the variational equality (28) we get the following homogeneous system in the unknown q
(K — o*M)q = 0. (29)

The frequency equation is given by the well known equation:
det(K — 0*M) = 0. (30)

4. Test functions
A general procedure which makes use of vectors ® and W respecting only the essential conditions is

presented. In particular orthogonal polynomial functions are assumed starting from a first polynomial p; of
grade equal to the number of the essential conditions. Obviously every p; € L,[0, L] is square integrable; i.e:

L L
/ pidx; < oo, (pipr) =/ pipidx; < oo. (31)
0 0
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The choice of these polynomials has proved to be very effective. The functions p; are obtained by means
of the Gram-Schmidt iterative procedure presented by Bhat (1985) and already utilized for Euler-Bernoulli
beams in Auciello (2001). In this case we first set all the ¢, related to the transversal displacements and
subsequently the y, related to the shear deformation. We start with the following polynomial:

¢l(x1) = ij{a J= 0,m (32)

where m is equal to the number of the essential conditions. Obviously we have to satisfy the normality
condition too:

(@1,01) = 1. (33)
The other polynomials ¢, with £ > r are obtained through the sequence:
@ = (x = D)@y — Crpy_ss (34)
where
Dy = (XPy_1, Pi1) C, — (XPi_1; Pi2) (35)

) k .
(Pr—1> Pi_1) (Pr_2: P 2)

The remaining functions i, are obtained from relative rotation conditions starting from a polynomial of
an order lower than the one chosen for the transversal displacements and repeating the sequence ((32)—(35))
after the substitution of ¢, with . In other words the polynomial function related to the transversal
displacements presents an order greater than the one related to rotation functions. This particular choice is
made in order to avoid the overestimation of the rate of elastic energy due to shear respect to the rate due to
bending. Otherwise we can’t simulate the Euler—Bernoulli beam. In fact rewriting Eq. (6):

(LR : L /
UZE/O [E1(¢)2+kGA(u2—¢)2]dx1=§/O EAB(MZH{

G

E(u/z — ¢) dx1 = Ub + US, (36)

we note that for u, — ¢ we get the deformation energy in the Euler—Bernoulli theory:

1 L
Ue =3 / EI(u) dx,. (37)
0

Consequently if we use polynomials of the same order for both displacements and rotations we get that in
(36) the ratio /4 goes to zero faster than the difference (i, — ¢). Then the energy rate Us, which does not
depend from 7/A4, overcomes the rate U, and the resulting elastic energy is erroneously much bigger than
the value in (37). This is a well-known numerical phenomenon defined in literature as shear-locking. It can
take place in the finite elements procedures when shear deformation and rotatory inertia are taken into
account; Carpenter et al. (1986). In other words, because the problem is strongly influenced by the choice of
the test functions, we could risk to increase the degrees of freedom of the structure without obtaining an
improvement of the solution.

Using the symbolic program Mathematica the sequence ((32)—(35)) have been implemented in a
numerical procedure which allows the calculation of the test functions satisfying the m essential conditions.
In the end assuming polynomial functions respectively of order m — 1 for u, and of order m — 1 for ¢ we
arrive to a consistent interpolation element type (Reddy, 1997).

Obviously, in order to avoid completely the shear locking higher order methods should be preferred
Reddy (1997).
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5. Results and discussion

In what follows, some problems, related to different boundary conditions, are discussed.

The numerical examples shown deal with beams made of homogeneous and isotropic material with a
ratio E/G equal to 2.6 and a shear correction factor k£ equal to 5/6. Although the method presented can be
applied to more complex structure we assume a beam section with a constant base B and a linearly variable
height H. In these conditions the geometrical parameters of the cross-section are given as functions of o:

A(xl) :A0(1+OOC1)7 I(xl) 210(1+OCX1)3. (38,39)
By 4y and I, we have denoted respectively the area and the inertia at x; = 0.
In the following two examples are given.

5.1. Cantilever beam with tip mass

Let us consider the case of the cantilever beam with a tip mass and rotatory inertia (Fig. 2a) already
reported by Leung and Zhou (1995).
Obviously we have to add in (11) the rate of kinetic energy due to the rotatory inertia:

602

Tu = [Mi5(L) + Jyd*(L))- (40)
From (13 and 14) we get
L 5 1|[Bs 0 _ o
Ty =50q {0 B, |4= 54 Mg (41)
where
B, = M®,®F, B, =J,¥, ¥ (42)

Obviously we have to add (41) into (26).

X7
% M,J
7 M N
z‘ ¢
¢ (a)
a
kr2
N krl (\ N
R [~
ktl kt2 )

Fig. 2. Beam of non-uniform thickness under compressive axial loads. (a) Cantilever beam with tip mass. (b) A general elastically end
restrained-beam.
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In the following we will make use of these two non-dimensional parameters which are frequently used in
literature:

I NL?
P C . (43,44)
A El,

Free frequencies are expressed through the parameters

A
0 — w2, [P (45)
El,

As first example the case of the cantilever without axial loads with tapering parameter o = —0.2 is
reported. This case has been analysed by Leung and Zhou (1995) using the dynamic stiffness method
(DSM), by Rossi et al. (1990) using a finite element approach (FEM) and by Auciello (2000) who used a

LA.
Table 1
Cantilever tapered beam with a tip mass; first three frequency coefficients for various values of n
0a=-02 Jy,=0 n Rossi Error (%) Error
et al. (%)
(1990)
r u Q 2 3 4 5 6 7 8 n8/Rossi et  n5/n8
al. (1990)
Clamped-free
0.02 0 Q 4.156 3.598 3.597 3.596 3.595 3.595 3.595 3.59 0.139 0.028
Q, 27.288  20.317 20.273 20.18 20.18 20.18 20.17 0.05 0.461
Q5 54.859 54355 53488 53.488 53.48 0.015 2.522
0.4 Q 2.348 2.146 2.144 2.144 2.144 2.144 2.144 214 0.187
Q, 18.754 15.646 15.536 15526 15525 15.525 15.52 0.032 0.071
Q; 46.133  45.243  45.05 45.026 45.03 0.009 2.447
1 Q 1.652 1.527 1.525 1.525 1.524 1.524 1.524 1.52 0.262
, 17.562  14.855 14.734 14728 14.726 14.726 14.72 0.041 0.054
Qs 45228 44293 44.133  44.113 44.12 0.016 2.517
0.04 0 Q 4.26 3.561 3.559 3.558 3.558 3.558 3.558 3.56 0.056
Q) 23.64 19.128  19.066 19.019 19.018 19.018 19.01 0.042 0.252
Q; 48302 47.796 47.398 47396 47.43 0.072 1.896
0.4 Q 2.3 2.131 2.129 2.129 2.129 2.129 2.129 2.13 0.047
Q, 16.993 14.895 14.826 14.82 14819 14.819 14.82 0.007 0.047
Q3 41.082  40.612 40.504 40.495 40.52 0.062 1.445
1 Q 1.622 1.517 1.516 1.516 1.516 1.516 1.516 1.51 0.396
[0 15.98 14.154 14.081 14.076 14.076 14.076  14.07 0.043 0.036
Q; 40.279  39.798 39.707 39.7 39.72 0.05 1.455
0.08 0 Q 3.703 3.423 3.422 3.422 3.422 3.422 3.422 3.42 0.058
Q, 17.665 15.899 15.854 15.84 15.84 15.84 15.84 0 0.088
Q5 35.64 35.385 35271 35271 35.35 0.224 1.043
0.4 Q 2.177 2.075 2.074 2.074 2.074 2.074 2.074  2.07 0.193
[0 13.661 12.787 12.761 12.758 12.758 12.758 12.76 0.016 0.024
Q; 31.049  30.9037 30.865 30.863  30.92 0.185 0.602
1 Q 1.543 1.482 1.481 1.481 1.481 1.481 1.481 1.48 0.068
Q, 12952 12.189 12.164 12162 12.162 12.162 12.16 0.016 0.016

Q3 30.445  30.303  30.271 30.269  30.32 0.168 0.581
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Because of (39), the applied mass is a function of the following parameters:

uzM(H—%)il, J*:\/%. (46)

In order to verify the convergence properties of the procedure, the first three frequencies, for different
values of r and n, are reported in Table 1. By n we denoted the number of the degrees of freedom used in the
discretization. In the last column the approximation for n = 8 is reported. It appears clearly that the dif-
ferences increase for smaller values of ». This is due to the shear locking phenomenon which, although
minimized, becomes measurable as » — 0 (Table 1).

The results given by different authors are reported in Table 2. In particular, those given by Leung and
Zhou (1995) and written in Italics are obtained using power series stopped to the 25th power and they are
practically coinciding with the results of this paper. As well known, in the LA method we get to the solution
from below so that the frequencies are lower than the exact ones. It is worth of note that for n = 7 the
model has 2n = 14° of freedom and achieves a very good accuracy with substantially few degrees of
freedom.

In Fig. 3, we have the variation of ©; for changes in the axial load and for two different values of
w: =0 3a)and u =1 (3b). It is worth to notice that as P, grows the fundamental frequencies decay and
go to zero as P, — P.. For the same o, the applied mass causes a decrease of natural frequencies. This can be
relevant in the seismic design where applied mass are introduced in order to change the natural period and
avoid resonance problems.

5.2. The beam with elastic constraints

The boundary conditions are referred to the scheme in Fig. 2b. The kinetic energy is still given by (11).
We just have to add in (6) the elastic energy of the constraints U.:

1 1 1 1
Us = 5k 9(0) + 5k (L) + 5knti}(0) + 3 katiy (L), (47)

Table 2
Cantilever tapered beam: comparison between the present method, the dynamic stiffness method, Leung and Zhou (1995), the finite
element method (FEM), Rossi et al. (1990), and the Lagrangian approach (LA), Auciello (2000)

o Jy =0 Present (-0.2) Leung and Zhou —0.2 LA (Rossi et al., —-0.2, LA (Auciello,
(1995) 1990) 2000)
r M Ql .Qz Qg, Ql Qz Q3 Q] .Qz .Q3 Ql Qz Q3
Clamped-free
0.02 0 3.587 20.18 53.488 3.59 20.17 53.48 3.584 19.984  52.445
0.4 2.144 15.525 45.05 2.14 15.52 45.03 2.002 15.228 44.219
1 1.524 14.726  44.133 1.52 14.72 44.12 1.402 14.542  43.474
0.04 0 3.558 19.018 47.398 3.56 19.01 47.43 3.552 18.855 46.693
0.2 2.588 15.671 41.542 2.59 15.67 41.53
0.4 2.129 14.819 40.504 2.13 14.82 40.52 1.99 14.559 39.474
0.6 1.85 14.435 40.081
1 1.516 14.076  39.707 1.51 14.07 39.72 1.393 13.921 39.328
0.08 0 3.422 15.84 35.271 3.42 15.84 35.35 3415 15.744  34.96
0.4 2.074 12.758  30.865 2.07 12.76 30.92 1.94 12.585  30.708
1 1.481 12.162  30.271 1.48 12.16 30.32 1.362 12.074  30.237
0.1 0 3.33 14.289 30.711 3.3 14.31 30.7

0.2 2.461 12.268 27.726  2.46 12.27 27.73
0.6 1.773 11.418 26.793 1.77 11.42 26.79
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u=0

o=—04—-—-—-0=-02------- o=

15,

0.5

0

0 0.2 0.4 0.6 0.8 1
(b) Pr

Fig. 3. (a) Fundamental frequency vs. axial-force parameter for cantilever beam with a tip mass: (a) u =0 (b) u = 1.

Using (13) and (14), after some algebra we get to the expression

1By 0
where
B; = ky ®(0)®"(0) + ko ®(L)®" (L), (49)
By =k, W(0)WT(0) + koW (L)W' (L). (50)
For numerical convenience it is better to introduce the following non-dimensional parameters:
kaL? koL? kL koL

Kr = =—— Kz = . 1

71 R2 EI(D) (51)

TEN0) " EIL) M T EN0)

The simply supported beam has been analysed for K71 — oo, Ky — oo and Ky = 0, Kp, = 0. In Fig. 4
the fundamental frequency parameter Q; vs. axial load for different o are reported.

In Table 3 the first five free frequencies for the pinned-pinned beam and for different values of o are
compared with the exact values given by Eisenberger (1995).

In order to obtain the upper frequencies the discretization parameter n has been chosen equal to 10 so
that the stiffness matrix has dimension equal to 20.
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0=0 ---eoe 0=0.1 =-=--0=0.2 =--=- 0:=0.3 =~~~ 0:=—0.2

O T T T T T
0 0.2 0.4 0.6 0.8 1

Fig. 4. Fundamental frequency vs. axial-force parameter for simply supported beam.
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Comparison of the first five non-dimensional frequencies for simply supported beam between present method and exact approach
(Eisenberger, 1995)

o -0.5 0 1

r=10.0707 Present Eisenberger Present Eisenberger Present FEM (Rossi
(1995) (1995) et al., 1990)

Pinned-pinned

Q1 6.765 6.754 9.023 9.023 11.901 11.896

Q2 24.462 24.539 29914 29.912 36.427 36.424

Q3 47.371 47.302 55.201 55.207 63.004 62.849

Q4 72.674 72.672 81.817 81.815 68.143 68.048

Q5 99.231 99.039 108.856 108.695 89.984 89.696

In Table 4 the values of Q; as function of » are reported and compared with the ones of other authors.
The solution obtained by Gutierrez et al. (1991) using a finite element procedure proposed by Przemieniecki
(1968) is almost coincident with the one presented in this paper. The same authors, Gutierrez et al. (1991)
developed a different procedure starting from the Ritz approach and using an optimization factor proposed

Table 4
Comparison of the first non-dimensional frequency Q,, between present method and Lagrangian approach (LA) for simply supported
beam
o 0 0.1 0.15
r Pres- Exact Ritzap- LA Pres- FEM Ritz ap- LA Pres- FEM Ritz ap- LA
ent proach (Auci- ent proach (Auci-  ent proach (Auci-
(Gut- ello, (Gut- ello, (Gut- ello,
ierrez 1993) ierrez 1993) ierrez 1993)
et al., et al., et al.,
1991) 1991) 1991)
Pinned-pinned
0.03 9.6949  9.695 9.748 9.676 10.1541 10.154 10.235 10.134  10.3774 10.377 10.458 10.36
0.04 9.5666  9.567 9.611 9.548 10.0071 10.007  10.045 9.988 10.2207 10.221  10.267 10.2
0.05 9.4106 9.411 9.446 9.393 9.8291 9.83 9.85 9.811 10.0314 10.031 10.054 10.01
0.06 9.2318 9.232 9.257 9.216 9.6265  9.627 9.645 9.61 9.8164 9.816 9.84 9.799
0.07 9.0356  9.036 9.057 9.021 9.4053  9.406 9.428 9.39 9.5825 9.582 9.604 9.566
0.08 8.8266 8.827 8.85 8.813 9.1713  9.172 9.189 9.157 9.3358  9.336 9.346 9.32
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by Schmidt (1982). These results are different from all the others reported because of the numerical
instabilities in the procedure. In the last column results are reported the results taken from a work of
Auciello (1993) where the LA has been used. Unlike the other classical methods, the latter provides the
convergence from below.

For the sake of completeness the remaining parameters 2, ed Q5 are reported in Table 5.

In Tables 6 and 7 the results with boundary conditions K7, — oo, Ky — oo and Kz = 0.1, Kz, = 0 are
reported. As can be easily verified the results are perfectly in agreement with the others.

5.3. The stability problem
The stability problem is obviously reduced to the following eigenvalue problem:
(Kv — PKp)q=0. (52)

The smallest P,, solution of (52), gives the critical value while the related eigenvector produces the first
order configuration. For o = 0, the constant section beam the exact solution is given by the formula

Table 5
As a Table 4 for Q, and Q5
o 0 0.1 0.15
QZ Q3 Qz Q} Q2 Q3
r Present LA Present LA Present LA Present LA Present LA Present LA
(Auci- (Auci- (Auci- (Auci- (Auci- (Auciello,
ello, ello, ello, ello, ello, 1993)
1993) 1993) 1993) 1993) 1993)

Pinned-pinned

0.03 36.9565 36.681 77.954  76.526  38.546  38.226  80.934  79.423 39.3182 39.037 82411 80.815
0.04 35332 35099 71.86 70.742  36.7218 36.487  74.212  73.043 37.3917 31.158 753655 74.137
0.05 33.572 33.373  65.971 65.084  34.7681 34.573 67.817 66.894 3534 35.147  68.713  67.747
0.06 31.784 31.621  60.562  59.838  32.805 32.643 62.016 61.265 33.29 33.13 62.716  61.932
0.07 30.037 29.899 55714 55.104 30.907 30.77 56.868 56.237  31.3176 31.183 57.419  56.763
0.08 28.372 28.254  51.415 50.888 29.1136 28.996  52.341 51.795 29.4618 29.346  52.781  52.213

Table 6
As a Table 4 for elastic spring (Kz; = 0.1)-pinned beam
o 0 0.1 0.15
r Present Exact Ritzap- LA Present FEM (Gut- LA Present FEM Ritzap- LA
proach Auci- ierrez (Auci- proach (Auci-
(Gut- ello, et al., ello, (Gut- ello,
ierrez 1993) 1991) 1993) ierrez 1993)
et al., et al.,
1991) 1991)

Pinned-pinned, Kz, = 0.1
0.03 9.787 9.789 9.824 9.769 10.243  10.244 10.325 10.223 10465 10.682 10.756 10.444

0.04 9.657 9.657 9.703 9.639 10.093  10.094 10.129 10.074 10.301  10.512  10.548 10.285
0.05 9.497 9.498 9.534 9.481 9.911 9.912 9.932 9.893 10.112  10.307 10.336 10.093
0.06 9.314 9.315 9.342 9.299 9.705 9.705 9.723 9.687 9.892  10.074 10.106 9.874
0.07 9.114 9.114 9.138 9.099 9.479 9.479 9.502 9.463 9.654 9.822 9.836 9.638

0.08 8.901 8.901 8.926 8.887 9.241 9.241 9.256 9.226 9.403 9.558 9.565 9.386




N.M. Auciello, A. Ercolano | International Journal of Solids and Structures 41 (2004) 4861-4874 4873

Table 7
As a Table 5 for elastic spring (Kz; = 0.1)-pinned beam
o 0 0.1 0.15
Q, Q, Q Q [9)) 2
r Present LA Present LA Present LA Present LA Present LA Present LA
(Auciello, (Auciello, (Auci- (Auci- (Auci-
1993) 1993) ello, ello, ello,
1993) 1993) 1993)

Pinned-pinned, Kz, = 0.1

0.03 37.009 36.763 77.571  76.595 38.6 38.346  80.479  79.489 39.374 39.117 81.882  80.881
0.04 35382  35.173 71.539  70.799 36.771  36.559  73.841  73.097 37.441 37228 74938 74.19
0.05 33.616 33.442 65.705  65.13 34.81 34.636 67.513 66938 35.383 35209 68.368  67.79
0.06 31.822 31.678 60.341  59.875 32,842 32.698 61.766 61301 33.327 33.184 62436 61.967
0.07 30.071  29.949 55.527  55.135 30938  30.818 56.662 56.266 31.349  31.229 57.19 56.791
0.08 28.401  28.297 51.258  50.913 29.141  29.038  52.168  S51.818 29.489 29.386  52.59 52.236

Table 8

Compressive buckling load for different boundary conditions
o Clamped-free Pinned-pinned Kz = 0.1-Pinned Clamped-clamped
-0.4 1.4653 3.9245 4.0163 10.4961
-0.2 1.8839 5.6787 5.7838 14.2016
0 2.2912 7.5459* 7.6605 17.6896*
0.1 2.4913 8.5079 8.6261 19.3318
0.2 2.6898 9.4822 9.6032 20.9015
0.3 2.8867 10.4645 10.5876 22.3954
0.4 3.0823 11.4504 11.5752 23.7648
0.6 3.4691 13.418 13.5449 26.2751
0.8 3.8529 15.3584 15.4851 28.3972
1 4.2327 17.2468 17.3718 30.1126

#Bazant-Cedolin; Eq. (58).

2ET 261 \

which takes into account the shear deformation too. Obviously the length L depends on the boundary
conditions; Bazant and Cedolin (1991). In Table 8, for » = 0.1 and for different values of o some critical
loads are reported. In particular they are referred to the following boundary conditions: clamped—clamped,
clamped—free and pinned—pinned. The numerical results for the uniform beam are reported in italics and
coincide with the ones obtained by the formula in (53).

6. Conclusions

The method presented, based on the Hamilton principle, obtains the solution minimizing the functional
of the problem. The approximation lies both in the choice of the test functions and in the iterative pro-
cedure for the search of the minimum. The test functions are orthonormal polynomials which satisfy the
essential conditions only and are automatically generated for every boundary conditions by the program of
symbolic calculus Mathematica. It must be stressed that the latter has shown to be a powerful tool for both
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analytical and numerical developments. Comparing the results with the ones in literature some reflections
can be pointed out.

(1) Compared to FEM a reduced number of parameters can be used with a consequently computer time
saving.

(2) The proposed procedure has shown to be effective, very easy to implement and, compared to the opti-
mization method with exponential factor, more stable especially for the higher frequencies.

(3) Assuming different test functions for displacements and rotations the shear locking can be limited. To
avoid completely the locking phenomena higher order methods must be used as the one in Reddy
(1997).

(4) Differently from other exact methods, the dynamic behaviour of tapered beams with various boundary
conditions can be analysed without defining the relative test functions.
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